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1. INTRODUCTION

Exponential Euler splines which have been presented in [1] constitute a
system of functions whose shapes are analogous to that of the integral ker­
nel of the Fourier transform. It is well known that the exponential Euler
splines converge to the kernel when their order approaches infinity [1]. In
the periodic case, it is also well known that they converge to Fourier
orthonormal functions [1,2]. But orthonormality has not been discussed
in the case where the order is finite.

Legendre splines which have been presented in [3] constitute an
orthonormal basis in a spline function space. But their shapes are not
analogous to those of Fourier orthonormal functions.

In this paper, we shall present a system of functions which constitutes an
orthonormal basis in a space of periodic spline functions and converges to
the system of Fourier orthonormal functions when the order approaches
infinity. In Section 2, periodic B-spline functions and spaces of periodic
spline functions are defined and their properties are discussed as the
analogy of [4]. In Section 3, we shall give an orthonormal basis in the
space of periodic spline functions and show that the orthonormal basis
converges to the system of Fourier orthonormal functions when the order
approaches infinity.
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2. PRELIMINARIES FOR THE SPACE OF PERIODIC SPLINE FUNCTIONS

In this section, spaces of periodic spline functions are formulated as the
analogy of [4].

DEFINITION 1. Let T, N be a real number, a natural number, respec­
tively. Then a periodic B-spline function of order m is defined as

00

[;]t/J~(t) ~ L {sin(npIN)lnp}m exp(i2nptIT),
p= -00

m = 1, 2, 3, ..., (1 )

which has period T and knots interval TIN.

The following recurrence formula is derived from (1) and the
convolution theorem in the Fourier series expansion.

1./,N f1,[B]'I'O(t)= 0,
tE(-TI2N+qT, T/2N+qT), q=O, ±1, ±2, ...,
otherwise,

(2)

[;]t/J~(t) = (liT)rm[B~t/J~(r) [B~t/J~(t- r) dr, m=2, 3,4, .... (3)

From (2) and (3), the periodic B-splines are expressed in the form of
piecewise polynomials as follows.

PROPERTY 2.

ex; m

[;]t/J~(t)=mTl-m L L {(-lY1r!(m-r)!}
q= -00 r=O

x {t-((r-mI2)IN+q) T}~-1, m= 1, 2, 3, ..., (4)

where

{t-a}~-l ~ ft-a}m-" t>a,
(5)

t::::; a.

DEFINITION 2. We shall define the space of periodic spline functions of
order m with period T and knots interval TIN as

(6)
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where

29

1=0,1, ..., N-1. (7)

The inner product of two elementsf, gE maN is defined as follows:

(f, g) ~ (lIT)rf(t) g(t) dt. (8)

As the analogy of Eq. (1.19) [1, p. 61], the inner products of periodic
B-splines are obtained as follows.

PROPERTY 3.

II, Iz = 0, 1, ..., N - 1. (9)

3. AN ORTHONORMAL BASIS IN THE SPACE OF

PERIODIC SPLINE FUNCTIONS

In this section, we shall present an orthonormal basis in the space of
periodic spline functions and show that the basis converges to the system of
Fourier orthonormal functions when the order approaches infinity.

The following theorem gives an orthonormal basis in the space of
periodic spline functions:

THEOREM 1. Functions {[O]t/Jn~':J which are defined by

N~I

[oJt/J1f ~ (mHfn- I/Z(I/N ) L exp(i2nlkIN) [;jt/J7 (10)
I~O

yield an orthogonal basis in maN, where

00

mHIf~ L {sin(nkIN)/n(k+pN)}Zm,
p= -00

k = 0, 1, ..., N - 1. (11 )

Proof Obviously the functions {[oJ t/Jn If,:dyield a basis in maN' Let us
calculate inner products of any two functions in {[O] t/Jn If,:d to prove their
orthonormality:
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([0] ljJ~, [0] ljJ~)

= ((mH~)-1!2 (lIN) ~~~ exp(i2nllkdN) [;jljJ~,

(mH~)-1!2(lIN):~~ exp(i2nI2k 2IN) [;jljJ~)

= {N- 2(mHt mH~)-1!2}

x {~~~ :~~ exp(i2n(/lkl-/2k2)IN)([;jljJ~, [;jljJ~)}- (12)

Making use of (9), we arrange the latter part of (12) as follows,
N-IN-l

L L exp(i2n(/lkl-/2k2)IN)([;jljJ~, [B]ljJ~)
1t~0 /z~o

N-I N-I

= L L exp(i2n(/lk l -/2k 2)IN) [~]ljJ~((l2 -II) TIN)
II ~O 12=0

= {~~~ exp(i2n(k l - k 2) IIIN)}

x{~~~ exp(-i2nk2/3IN) [~ljJ~(/3TIN)} (/3 ~ 12-/d

N-I

= Nf>kl _ k2 L exp( - i2nk2/31N) [~ljJ~(/3TIN), (13)
13=0

where
(k = 0),

(k;6 0).

Let f>(t) denote Dirac's delta function of t. Then the following equation
holds good from the convolution theorem in the Fourier series expansion
and (l):

N-I

Nf>kl-k2 L exp( -i2nk2/3IN) [~ljJ~(/3TIN)
iJ=O

= Nf>kl_k2(1IT)rexp( - i2nk2tlT) [~ljJ~(t) { T ~~~ f>(t -/3TjN)} dt

= Nb kl - k2 P ~~ 00 {(lIT)r(T :~~ b(t -/3TIN)) exp( - i2nptlT) dt}

x {(lIT)r [~ljJ~(t) exp( - i2n(k2- p) tiT) dt}
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00

=N{)kl~k2 L {N{)pmodN}{sin(n(k2-p)jN)jn(k2-p)}2m
P~ -00

00

=N2{)kl_k2 L {sin(nk2/N)/n(k2-pN)}2m
P~ -00

Substituting (13) and (14) for (12), we have

k 1 , k 2 = 0, 1, ..., N - 1. (15)

From the above, the functions {[O] l/Jn f,:-d yield an orthonormal basis
in mJ N' Q.E.D.

Now we shall consider that {[F] t/J r} ~= _ 00 denote the system of Fourier
orthonormal functions, Le.,

[F]t/Jr(t) ~ exp(i2nrt/T), r = 0, ± 1, ±2, .... (16)

Then the inner products of the orthonormal basis in a space of periodic
spline functions with the Fourier are obtained as the following theorem.

THEOREM 2.

([0] t/Jf, [F] t/J r) = (mHf) -1/2 {sin(nr/N)/nr}m {)(k - r)modN'

k=O,I, ...,N-l; r=O, ±1, ±2,.... (17)

Proof Substituting (10), (11), and (16) for (8), we have

N-l
= (mHf)-1/2(I/N) L exp(i2n/k/N)([;]t/Ji', [F]t/Jr)

I~O

N-l
= (mHf) -1/2{ sin(nr/N)/nr }m(I/N) L exp(i2n/(k - r)/N)

1=0

(Q.E.D.)

The following theorem shows an extremum property of the orthonormal
basis in mJ N when m approaches infinity.

640/55/1-3
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THEOREM 3. When m approaches infinity,

( m.I.N ,I.) {c5(k- rlmodN'
[O]'I'k' [F]'I'r - 0,

Proof Substituting (11) for (17), we have

Irl < N12,
Irl > N12.

(18)

([0] 1jJ~, [F] IjJ r)

{

00 } -1/2

= p~~oo {sin(nkIN)ln(k+pN)}2m x {sin(nrIN)/nr}mc5(k_r)mOdN'

k=O, 1, ..., N-1; r=k+qN. (19)

Since (19) is nonzero if and only if (k - r) mod N = 0, let us consider this
case and assume r = k + qN (q = 0, ± 1, ±2, ... ). Then (19) yields

([0]1jJ~, [F]ljJr)

= L~~oo ((k+ qN)/(k+ PN))2m} -1/2 sgn[{sin(nrIN)/nr}m],

k=0,1,oo.,N-1; r=k+qN (q=O, ±1, ±2,oo.). (20)

We define mH;t as

00

mH~N ~ L: ((k+qN)/(k+pN))2m
p= -00

(21 )

and study its behavior when m approaches infinity. Put p' ~ P - q. Then
we have

00

mH~N= L: ((k + qN)/(k + p'N + qN))2m
p' = - 00

00

= L: (r/(r +p'N)fm

p'~ -00

00

= 1+ (2rIN)2m L: {(2rIN + 2p') -2m + (2r1N - 2p') -2m}. (22)
p'~ 1

Case 1. Irl > N12. Since it obviously holds good that

00

L: {(2rIN + 2p,)-2m + (2r1N - 2p')-2m} ~ 1, (23)
p'= 1
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mHkN approaches infinity when m tends to infinity. This gives that

33

([;]t/Jt, [Flt/Jr) -+ 0 (m -+ 0Cl).

Case 2. Irl < N12. Expression {(2rIN + 2p')-2m + (2r1N - 2p')-2m} is a
convex function of r in the domain Irl :::; NI2 and has its maximum value at
r = ± N12. Then it holds good, when Irl < N12, that

00

L {( 2rIN+2p')-2m+(2rIN-2p')-2m}
p'~ 1

00

< L {(1 + 2p ')-2m + (1- 2p')-2m}
p'~ 1

00

= - 1+ 2 L (2p' - 1) -2m
p'= 1

00

:::; -1 +2 L (2p'_1)-2
p'~ 1

(24)

Therefore, mHkN converges to 1 when m approaches infinity. Paying atten­
tion to {sin(nrIN)/nr}m>O for Irl <NI2, we have

From the above, Theorem 3 holds good.

(m -+ 0Cl).

Q.E.D,

COROLLARY 1. In the case that N is odd, when m approaches infinity, it
holds good that

k = 0, 1, ..., (N - 1)/2,
k = (N + 1)/2, ..., N-1.

(25)

4, PHYSICAL MEANING OF THE ORTHONORMAL BASIS

Corollary 1 shows that the orthonormal basis in m {) N converges to the
system of Fourier orthonormal functions when the order approaches
infinity if the dimension N is odd. We may say that the orthonormal basis
introduces some physical concept like the harmonic frequency into a space
of periodic spline functions. We shall call such concept "fluency."

Convergence in the case of even dimension is left for further investigation
in the future.
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